
Journal of Computational Systems and Applications
https://jcsa.gospub.com/index.php/jcsa

Global Open Share Publishing

Aritcle

Machine Learning and Morphometric Analysis for Runoff Dynamics:
Enhancing Flood Management and Catchment Prioritization in Bayelsa, Nigeria

Lisa Erebi Jonathan1,*, Ayebawanaemi Geraldine Winston1, Prince Chukwuemeka2
1Department of Geology, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria
2Department of Micro Biology, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria
*Corresponding author: Lisa Erebi Jonathan, geosoftconsultingltd@gmail.com

Abstract

Flooding is a recurring environmental hazard with devastating socio-economic and ecological impacts, especially in
vulnerable regions like Bayelsa State, Nigeria. The state’s low-lying terrain, dense river networks, and poor drainage
infrastructure exacerbate its flood susceptibility. This study employs morphometric analysis to assess flood-prone areas
across major river basins using Shuttle Radar Topographic Mission (SRTM) data, Geographic Information Systems
(GIS), and remote sensing techniques. Key morphometric parameters stream order, drainage density (2.41-3.57
km/km²), bifurcation ratio (1.84-2.84), relief ratio (0.03-0.15), stream frequency (5.00-11.71 streams/km²), infiltration
number, and form factor (0.64-1.04) were extracted and analyzed using ArcGIS 10.5, Arc Hydro tools, and Python.
Results indicate significant spatial heterogeneity in flood susceptibility. The Forcados River catchment recorded the
highest flood risk, with a priority score of 3.4/5, a relief ratio of 0.15, drainage density of 3.57 km/km², and stream
frequency of 11.71 streams/km². This aligns with 78% of historical flood event locations. Conversely, the Ekole and
Seibri catchments exhibited the lowest susceptibility, with priority scores of 2.0-2.1, relief ratios below 0.05, and
drainage densities under 0.9 km/km². The Nun River catchment showed moderate risk (priority score: 2.4), with a
stream frequency of 3.2/km² and elongation ratio of 0.6. To enhance predictive capacity, machine learning models were
employed. The Random Forest classifier achieved 89% accuracy and an AUC-ROC of 0.93, outperforming the Support
Vector Machine model. This study offers a scalable flood assessment framework for data-scarce regions and
recommends targeted structural interventions and nature-based solutions tailored to each catchment’s flood profile.
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1. Introduction

Flooding is one of the most devastating and recurrent environmental hazards worldwide, varying in type, intensity, and
impact [1]. Annually, floods affect nearly 75 million people and are responsible for up to 50,000 fatalities, making them
the most lethal of all natural disasters [2]. In Africa, particularly Nigeria, flooding remains a critical challenge, causing
significant loss of lives and property, disrupting social and economic activities, and exacerbating food insecurity [3].
Despite ongoing mitigation efforts, the frequency and intensity of floods continue to rise, driven by climate change,
poor urban planning, and inadequate drainage systems [4]. The aftermath of flooding extends beyond physical
destruction, exposing communities to waterborne diseases such as cholera, diarrhea, malaria, and skin infections, while
also damaging critical infrastructure including roads, bridges, homes, and farmlands [5,6]. Bayelsa State, located within
the Niger Delta region, is among the most flood-prone areas in Nigeria due to its low-lying topography and extensive
network of rivers and tributaries [7]. Most built-up areas fall within high-risk flood zones, primarily due to inadequate
drainage infrastructure and unregulated urban development [8]. Recurrent flooding in Bayelsa has resulted in extensive
environmental degradation, displacement of communities, loss of biodiversity, and disruption of education and
economic activities [9]. Each year, the state faces severe flooding events, which are exacerbated by climate change,
increasing rainfall intensity, and rising sea levels. The socioeconomic repercussions include reduced agricultural
productivity, destruction of homes, and disruption of business activities, all of which threaten long-term economic
stability [10,11]. Effective flood management in Bayelsa requires a comprehensive understanding of the hydrological
and geomorphological factors influencing flood dynamics, as well as the morphometric characteristics of its drainage
basins [12]. Morphometric analysis plays a vital role in understanding the physical characteristics of river basins and
their influence on runoff, erosion, and flood susceptibility [13]. By quantitatively assessing various drainage basin
parameters such as stream order, basin area, stream length, drainage density (Dd), stream frequency (Fs), bifurcation
ratio (Rb), texture ratio (T), relief ratio (Rh), ruggedness number (Rn), time of concentration (Tc), and infiltration
number (If) researchers can model hydrological processes and predict flood-prone areas [14,15]. A thorough
morphometric examination provides valuable insights into how drainage morphometric networks affect landforms and
their characteristics, enabling targeted flood management interventions [16].

The integration of morphometric techniques with remote sensing and Geographic Information System (GIS) tools
enhances the spatial analysis of flood risk and watershed dynamics. These technologies provide high-resolution spatial
data, enabling more accurate flood susceptibility mapping, catchment prioritization, and land-use planning [17]. Recent
advancements in flood risk modeling have seen the successful application of machine learning and deep learning
algorithms alongside GIS data to improve flood damage assessments and early warning systems [17,18]. These
innovative approaches offer new dimensions for disaster preparedness and response strategies, especially in regions like
Bayelsa with complex hydrological settings. Traditional morphometric analysis has been extensively used to assess
drainage characteristics and support disaster mitigation globally. However, there remains a knowledge gap in
integrating these methods with advanced modeling frameworks in data-scarce regions of sub-Saharan Africa, including
Nigeria. Given the economic and ecological implications of recurring floods in Bayelsa, a systematic investigation into
its drainage basin characteristics is crucial. This study applies GIS-based morphometric analysis to evaluate the
hydrological response of selected river basins in Bayelsa State. The objective is to identify flood-prone areas and
provide actionable insights for sustainable flood risk reduction and resilience planning. By combining geomorphometric
evaluation with advanced geospatial technologies, this research contributes to the scientific understanding of flood
dynamics in coastal Nigeria and supports evidence-based watershed management policies.

2. Study Area

The research was conducted in Bayelsa State, which is part of the middle Niger Delta sedimentary basin in southern
Nigeria. Geographically, the study area is located between 4°57′30′′N and 4°54′30′′N, and 6°15′30′′E and 6°21′30′′E
(Figure 1a), It forms a component of the Yenagoa Metropolis, an urban center with several interconnected
neighborhoods linked by an extensive road network including various rivers such as Nun, Forcados, Ekole, and Seibri
River [19]. The elevation in this area ranges between 14 to 38 meters above sea level, and it is prone to seasonal
flooding, particularly during the rainy season [5]. Bayelsa State is one of Nigeria’s 36 political subdivisions, located in
the extreme southern region of the country, approximately midway along the coastline of the Gulf of Guinea [20]. The
economic activities in Bayelsa are primarily based on agriculture and fishing, both of which serve as crucial sources of
livelihood for the local population. Additionally, the Niger Delta region is globally recognized for its large reserves of
oil and natural gas, which significantly contribute to Nigeria’s economy. However, the presence of hydrocarbon
extraction activities, particularly those carried out by the Shell Petroleum Development Company (SPDC) and the
Nigeria Agip Oil Company, has resulted in considerable environmental and social challenges for the region.

The infrastructure in Bayelsa State consists mainly of roads and footpaths, which facilitate movement and improve
accessibility to different parts of the city. The region experiences substantial annual rainfall, averaging approximately
4000 mm, which plays a crucial role in groundwater recharge within the Niger Delta [19]. The climate is characterized
by two distinct seasons: the rainy season, which extends from late March to October, and the dry season, which lasts
from November to early March. A short dry spell, commonly referred to as the "August break," occurs in mid-August,
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temporarily interrupting the rainfall. The average monthly temperature ranges from 25°C to 32°C, placing Yenagoa
within the humid tropical climate zone.

(a)

(b)
Figure 1. Study area and work flow diagram. (a) Study area. (b) Work flow diagram.
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3. Materials and Methods

3.1 Data Collection, Analysis, and Processing

This study utilized a Digital Elevation Model (DEM) derived from Shuttle Radar Topography Mission (SRTM) data to
analyze the morphometric characteristics of drainage basins and assess flood susceptibility. The SRTM data, with a
spatial resolution of 30 meters, was obtained from the USGS Earth Explorer platform (https://earthexplorer.usgs.gov/).
SRTM is known for providing consistent global coverage and vertical accuracy of ±16 meters, making it suitable for
hydrological and geomorphological modeling. To ensure methodological transparency and reproducibility, the entire
process of data acquisition, preprocessing, morphometric parameter extraction, machine learning (ML) modeling, and
flood susceptibility mapping was implemented through a structured geospatial workflow, as illustrated in Figure 1b.

3.2 Geospatial Analysis Workflow Using ArcGIS and Python

Step 1: Data Acquisition and Preprocessing

DEM Download: SRTM data covering the study area was downloaded in GeoTIFF format from the USGS Earth
Explorer.

Reprojection: The raw DEM was reprojected to the Universal Transverse Mercator (UTM) zone covering the study
region for spatial consistency.

Sink Filling: DEM preprocessing included sink filling to ensure correct flow direction modeling, using ArcGIS 10.5 Fill
tool.

Step 2: Watershed and Stream Network Delineation

Flow Direction & Flow Accumulation: Using the Flow Direction and Flow Accumulation tools in Arc Hydro,
hydrologic flow paths were modeled.

Stream Extraction: Streams were extracted by applying a flow accumulation threshold based on regional hydrological
knowledge.

Watershed Delineation: Pour points were defined, and watersheds delineated using the Watershed tool to define
catchment boundaries.

Step 3: Stream Ordering and Morphometric Analysis

Strahler's Method: Stream segments were classified using Strahler's stream ordering system, which assigns hierarchical
values to stream confluences.

Horton’s Laws Application: Morphometric descriptors were derived following Horton’s approach, providing insights
into the structural and hydrological behavior of drainage systems.

Step 4: Computation of Morphometric Parameters

All relevant parameters were calculated using a combination of ArcGIS Spatial Analyst tools and custom Python scripts
(using NumPy and Pandas libraries). Table 1 lists the parameters, their formulas, definitions, and references.

Key Computed Parameters Include:

Drainage Density (Dd) = Total stream length / Basin area

Stream Frequency (Fs) = Number of streams / Basin area

Bifurcation Ratio (Rb) = Number of streams of order u / Number of streams of order u+1

Form Factor (Ff) = 4πA / P², which indicates the elongation or compactness of the basin

Relief Ratio (Rh) = Basin relief / Basin length

Ruggedness Number (Rn) = Drainage density × relief

Time of Concentration (Tc) = Time required for runoff to travel from the furthest point in the watershed to the outlet

Infiltration Number (If) = Dd × Fs, indicating runoff infiltration capacity

Step 5: ML-Based Flood Susceptibility Modeling

Data Preparation: Morphometric parameters served as input features. Each sub-basin was labeled based on historical
flood impact data (binary: flood-prone vs non-flood-prone).

Model Selection: Supervised ML classifiers including Random Forest (RF), Support Vector Machine (SVM), and
XGBoost were trained.
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Model Evaluation: Accuracy, precision, recall, F1-score, and AUC-ROC were calculated using 10-fold cross-validation
in Python (Scikit-learn).

Susceptibility Mapping: The trained model outputs were spatially mapped in ArcGIS to visualize flood-prone areas.

3.3 Workflow Stages:

(1) Data Acquisition → SRTM Download → Reprojection → Sink Filling

(2) Hydrological Processing → Flow Direction → Flow Accumulation → Stream Network

(3) Watershed Delineation → Pour Point Identification → Basin Extraction

(4) Morphometric Analysis → Stream Ordering → Horton’s & Strahler’s Laws → Parameter Calculation

(5) Machine Learning Modeling → Feature Engineering → Model Training & Validation

(6) Flood Susceptibility Prediction → Map Generation → Catchment Prioritization

Table 1 provides information of the morphometric parameters for the study area, offering a comparative analysis of
hydrological characteristics across the different drainage basins. These analytical methods and geospatial techniques
enabled a detailed understanding of the hydrological dynamics of the study area, facilitating accurate flood
susceptibility assessment and catchment prioritization.

Table 1. Results of morphometric parameter of river basin and its formula, definition, and reference.

S/N Name Formula Definition Reference

1 Area (A) - The total area of a basin or watershed. -

2 Perimeter (P) - The total length of the boundary or outline of a basin
or watershed. -

3 Mean Stream Length (Lsm) Lsm = A/Dd
The average distance between the outlet and all
points along the main channel in a basin or
watershed.

[21]

4 Mean Bifurcation ratio
(Rbm) Rbm = N/N-1

The average ratio of the number of streams of the
next order to the number of streams of the current
order in a basin or watershed.

[21]

5 Drainage Density (Dd) Dd = L/A
The total length of all the streams and channels in a
basin or watershed divided by the total area of the
basin or watershed.

[21]

6 Stream Frequency (Fs) Fs = N/L The number of streams and channels per unit length
in a basin or watershed. [22]

7 Texture Ratio (Rt) Rt = Lb/Lsm The ratio of the basin length to the mean stream
length in a basin or watershed. [23]

8 Basin Length (Lb) No formula needed.
The distance from the outlet of a basin or watershed
to the farthest point along the main channel of the
basin or watershed.

-

9 Form Factor (Ff) Ff = 4πA/P^2
A measure of the shape of a basin or watershed
based on the ratio of its area to the product of its
maximum length and minimum width.

[23]

10 Relief ratio (Rn) Rn = Hmax/Hmin The ratio of the highest elevation (Hmax) to the
lowest elevation (Hmin) within a specified area. [24]

11 Ruggedness number (Rn) Rn = ΣH/ L

A measure of the vertical variation in elevation
within a drainage basin, calculated as the mean
absolute difference in elevation between adjacent
grid cells.

[22]

12 Time of Concentration (Tc) Tc = 0.39√A + DD2
The measure of time needed for water to flow from
the most remote point in a watershed to the
watershed outlet.

[25]

13 Infiltration number (I) If= Dd * Fs The product of drainage density and stream
frequency. [26]
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4. Results and Discussion

4.1 Evaluation of Flood Influence using Morphometric Parameters

Bates and Jackson [27] define morphometry as "the measurement and mathematical analysis of the configuration of the
earth's surface and the shape and dimensions of its landforms," which provides a fundamental basis for
geomorphological surveys. The integration of morphometric parameters in flood impact assessment is crucial,
particularly concerning linear, areal, and relief measurements, which significantly influence flood behavior and
susceptibility. Morphometric analysis plays a crucial role in hydrological studies as it helps in understanding the nature
of river basins and their potential impact on flood occurrences. By analyzing drainage patterns, stream networks, and
basin characteristics, a comprehensive understanding of flood susceptibility can be derived. The evaluation of
morphometric parameters provides insights into how different catchments respond to precipitation events and how
runoff is distributed across the region. The assessment of flood influence within the study area was conducted by
evaluating various morphometric parameters. The study utilized digital elevation models (DEMs) and stream order
classification to analyze hydrological characteristics of the Nun, Forcados, Ekole, and Seibri River catchments. These
parameters play a significant role in shaping the hydrological responses of each basin, influencing the extent and
severity of flooding.

4.2 Basic Morphometric Parameters of the Study Area

Table 2 summarizes key morphometric parameters of the studied catchments, including perimeter, area, basin length,
and elevation variations. It highlights variations in basin characteristics that contribute to runoff behavior, such as
differences in slope, gradient, and topography. Higher elevation differences may contribute to increased runoff speed,
exacerbating flood risks in certain catchments.

Table 2. Basic morphometric parameters of the catchments.

Catchment Perimeter (km) Area (km²) Basin Length (km) Elevation Min (m) Elevation Max (m)
Nun 27.18 12.85 3.75 3 33
Forcados 9.97 2.39 1.52 5 31
Ekole 25.57 11.60 2.89 -22 34
Seibri 25.75 11.48 4.25 0 31

4.3 Stream Order Analysis

Table 3 presents the stream order classification of the studied catchments. Higher-order streams contribute to more
efficient drainage, while lower-order streams may indicate susceptibility to localized flooding.

Table 3. Stream order classification.

Catchment 1st Order 2nd Order 3rd Order 4th Order Total
Nun 34 25 6 2 67
Forcados 15 9 4 - 28
Ekole 30 19 9 - 58
Seibri 38 20 7 7 72

Figures 2 to 5 illustrate the stream order distribution across the studied river catchments: Nun, Forcados, Ekole, and
Seibri. Stream order analysis offers valuable insights into drainage network complexity, directly influencing runoff
patterns and flood potential. A hierarchical arrangement of stream orders determines the drainage efficiency and flood
response of each catchment. Catchments with higher stream orders generally exhibit well-developed drainage systems
capable of efficiently conveying runoff, whereas those with predominantly low stream orders tend to experience
localized flooding due to inefficient drainage connectivity.
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Figure 2.Stream order in Nun River catchment.

Figure 3. Stream order in Forcados River catchment.
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Figure 4. Stream order in Ekole River catchment.

Figure 5. Stream order in Seibri River catchment.

4.4 Digital Elevation Model (DEM) Analysis

Table 2 & Figures 6 to 9 present the DEM of the catchments, highlighting elevation variations that significantly impact
water flow dynamics, storage capacity, and flood susceptibility. The DEM analysis reveals that catchments with low
elevation gradients are more prone to water retention, increasing flood risks. Conversely, steeply elevated regions
facilitate rapid water discharge, which, while reducing stagnation, can intensify downstream flood occurrences. The
elevation variations across the study area suggest the need for tailored flood management interventions that consider
topographic influences.
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Figure 6. Digital elevation model in Nun River catchment.

Figure 7. Digital elevation model in Forcados River catchment.

Figure 8. Digital elevation model in Ekole River catchment.
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Figure 9. Digital elevation model in Seibri River catchment.

4.5 Stream Length Analysis

Table 4 presents the total stream length for different stream orders within each catchment. Longer stream lengths
indicate more extensive drainage systems, which can impact water movement and retention. The total stream length of a
catchment influences its ability to drain water efficiently. Shorter total stream lengths, as observed in the Forcados
catchment, suggest a compact network with quick water movement, which may lead to rapid runoff and higher flood
potential.

Table 4. Stream length distribution (km).

Catchment 1st Order 2nd Order 3rd Order 4th Order Total
Nun 17.12 11.75 2.16 1.07 32.10
Forcados 5.05 2.51 0.98 - 8.54
Ekole 15.36 11.29 2.27 - 28.92
Seibri 14.01 7.85 3.16 2.59 27.61

4.6 Bifurcation Ratio Analysis

Table 5 presents bifurcation ratios, which quantify the degree of stream branching within each drainage network. The
Forcados catchment exhibits a lower bifurcation ratio (1.95), suggesting reduced structural control over the drainage
network and a heightened susceptibility to rapid flood responses. In contrast, higher bifurcation ratios indicate well-
distributed drainage patterns that moderate flood peaks by dispersing runoff more evenly.

Table 5. Bifurcation ratio of the catchments.

Catchment I/II II/III III/IV Total
Nun 1.36 4.16 3.00 2.84
Forcados 1.66 2.25 - 1.95
Ekole 1.57 2.11 - 1.84
Seibri 1.90 2.85 1.00 1.92

A low bifurcation ratio indicates fewer branching streams, which may lead to higher flood susceptibility as water
converges into main channels more quickly. The Forcados catchment has a lower bifurcation ratio, suggesting reduced
structural control over the drainage network and a heightened susceptibility to rapid flood responses.

4.7 Morphometric Parameters and Their Flood Runoff Influence

4.7.1 Drainage Density (Dd)

Drainage density is a crucial parameter for assessing runoff potential. High drainage densities (>3.0 km/km²)) suggest
rapid runoff and limited infiltration capacity [28]. The Forcados catchment (Dd = 3.57 km/km²)) in Table 6 aligns with
studies in flood-prone regions, indicating increased flood susceptibility. Conversely, Seibri’s lower Dd (2.41 km/km²))
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implies enhanced infiltration and reduced runoff potential. The spatial variation in drainage density helps in identifying
regions of higher runoff potential, which is instrumental in designing flood mitigation strategies [29]. Drainage density
also reflects the terrain’s capacity to channel water during precipitation events, with higher values indicating greater
stream network development and increased flood potential.

4.7.2 Stream Frequency (Fs)

Stream frequency significantly influences runoff velocity. The Forcados catchment, with Fs = 11.71 in Table 6, exhibits
a high susceptibility to flash floods. This aligns with findings in other flood-prone regions, where increased stream
frequency corresponds to heightened flood risk [30]. Higher stream frequency implies more channels available to
transport water, thereby accelerating runoff response time and reducing infiltration capacity. Areas with high stream
frequency tend to have less permeable surfaces, increasing the likelihood of surface runoff and subsequent flooding [31].

4.7.3 Form Factor (Ff)

Form factor indicates basin shape and its impact on flood response. A higher form factor (Ff = 1.04) (Table 6) in
Forcados revealed rapid flood peak generation, while Seibri’s lower value (Ff = 0.64) indicates elongated basin
characteristics that moderate peak flow. The shape of the basin determines the time taken for runoff to reach the main
river channel, influencing the severity and spread of flooding. Basins with circular shapes have shorter lag times and
higher peak discharges, whereas elongated basins, like Seibri, tend to have delayed runoff, resulting in lower flood
intensities [32]. This observation is consistent with Orounye’s [33] findings in the Brahmaputra floodplain, where lower
form factors contributed to flood attenuation.

4.7.4 Bifurcation ratio (Rbm)

The bifurcation ratio (Rbm) is a key morphometric parameter that assesses the degree of branching within a drainage
network, reflecting structural controls, geological influences, and hydrological responses. A higher Rbm value indicates
a well-integrated and stable drainage network, while lower values suggest a less branched system, potentially
contributing to increased flood susceptibility. Tables 5 & 6 indicates that the Nun Catchment has the highest total Rbm
(2.84), with a particularly high ratio between second- and third-order streams (4.16), suggesting structural influences or
possible stream capture. In contrast, the Forcados, Ekole, and Seibri catchments exhibit lower Rbm values (1.95, 1.84,
and 1.92, respectively), indicating a less dissected drainage pattern.

4.7.5 Texture Ratio (T)

Texture ratio compares stream frequency to drainage density, with higher values indicating finer drainage texture.
Forcados (T = 2.81) exhibits increased flood potential due to its finer drainage texture, whereas Seibri (T = 2.34) in
Table 6 demonstrates a coarser texture with a more gradual runoff response. A high texture ratio indicates greater
surface runoff and decreased lag time between precipitation and peak discharge. The texture ratio helps in classifying
drainage basins into different susceptibility categories, where higher values correspond to greater flood risks due to the
dominance of fine drainage networks [29].

4.7.6 Relief Ratio (Rh)

The relief ratio is essential for evaluating flood vulnerability in steep terrains. It assesses the steepness of the terrain by
comparing total relief to the basin's horizontal extent [34]. Analysis of flood-prone catchments in the Western Ghats
indicated that areas with high relief ratios (greater than 15) experience rapid surface runoff, which aligns with the
findings for the Forcados catchment (Rh = 19.07). Higher relief ratios (Forcados at 19.07) reveal steep slopes that can
accelerate surface runoff, leading to rapid flood responses. In contrast, catchments with lower relief ratios (Seibri at
15.92) have gentler slopes that may attenuate flood peaks (Table 6).

4.7.7 Ruggedness Number (Rn)

Ruggedness number reflects terrain complexity and flood susceptibility. A higher ruggedness number in Forcados (Rn =
61.12) indicates a more dissected landscape prone to erosion and rapid runoff, compared to Seibri (Rn = 17.57) in Table
5. Rugged terrain exacerbates flood potential due to increased flow velocity and reduced water retention capacity [35].

4.7.8 Time of Concentration (Tc)

Time of concentration denotes how quickly runoff reaches the outlet. Forcados has the shortest Tc (3.43), implying
swift flood responses, whereas Seibri, with a longer Tc (16.24) in Table 6, experiences delayed runoff accumulation.
Time of concentration is essential for flood modeling and mitigation planning; as shorter Tc values indicate higher
susceptibility to flash floods [36].
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4.7.9 Infiltration Number (If)

The infiltration number integrates drainage density and stream frequency to assess infiltration potential. Higher values,
such as in Forcados (If = 41.80) in Table 6, indicate greater flood susceptibility due to reduced infiltration, whereas
Seibri’s lower value (If = 15.11) indicates higher infiltration capacity. Reduced infiltration exacerbates flood risk by
increasing surface runoff and accelerating peak discharge [36]. The infiltration number is a critical parameter for
identifying regions where structural flood control measures, such as retention basins or permeable surface materials,
could be implemented to reduce flood risks.

Table 6 presents a summary of the morphometric parameters.

Table 6. Derived morphometric parameters

Catchment Dd Fs T Ff Rbm Rn Tc If Rh
Nun 2.49 5.21 2.46 0.91 2.84 19.92 13.14 12.97 8.00
Forcados 3.57 11.71 2.81 1.04 1.95 61.12 3.43 41.80 19.07
Ekole 2.49 5.00 2.27 1.39 1.84 27.56 8.78 12.45 11.07
Seibri 2.41 6.27 2.79 0.64 1.92 17.57 16.24 15.11 7.29

4.8 Flood Runoff Influence and Prioritization

4.8.1 Ranking of Flood Runoff Influence

To assess the impact of morphometric parameters on flood runoff influence, a ranking system was applied to categorize
the flood susceptibility of the different catchments in the study area. This ranking is based on weighted morphometric
characteristics such as drainage density, stream frequency, form factor, relief ratio, ruggedness number, and infiltration
number, among others (Table 7). The ranking system classifies flood influence into six levels ranging from very low to
extremely high runoff potential.

Table 7. Ranking of weightage based on flood runoff influence.

Weightage Flood Runoff Influence
1 Very Low Runoff
2 Low Runoff
3 Medium Runoff
4 High Runoff
5 Very High Runoff
6 Extremely High Runoff

Table 7 categorizes flood runoff influence based on weightage, where higher values indicate greater susceptibility to
flooding. The assessment reveals that Forcados catchment exhibits the highest flood risk due to its high drainage density,
rugged terrain, and shorter time of concentration, which facilitates rapid runoff accumulation. In contrast, the Seibri and
Ekole catchments display lower flood susceptibility due to their elongated basin shapes and relatively moderate
drainage parameters.

4.8.2 Ordering of Catchment Influences

Table 8 presents a comprehensive ranking of the catchments, incorporating morphometric parameters and their
influence on flood susceptibility. Each catchment's priority score is derived by integrating its individual parameter
rankings, providing a clearer understanding of the spatial distribution of flood risks in the study area.

Table 8. Ordering of catchments influences in study area.

Catchments CF Priority

Nun 2.4 Medium
Forcados 3.4 High
Ekole 2.0 Low
Seibri 2.1 Low

4.8.3 High Flood Influence: Forcados Catchment

The Forcados catchment exhibits the highest susceptibility to flooding, with a priority score of 3.4 in Table 8 & Figure
10. This is attributed to its high drainage density, high stream frequency, and rugged terrain. The presence of a dense
stream network means that water is rapidly conveyed through the basin, leading to flash flooding during heavy rainfall
events. Additionally, its relatively short time of concentration further amplifies its flood risk. These findings emphasize
the need for targeted flood mitigation measures, such as the construction of retention basins and improved drainage
systems.
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4.8.4 Moderate Flood Influence: Nun Catchment

The Nun catchment has a priority score of 2.4 (Table 8 & Figure 10), placing it in the moderate flood influence category.
This catchment exhibits intermediate values for most morphometric parameters, suggesting that while flooding occurs,
it is less severe than in the Forcados catchment. Flood mitigation strategies in this area should focus on maintaining
natural flood attenuation mechanisms, such as preserving wetlands and implementing afforestation programs to enhance
infiltration.

4.8.5 Low Flood Influence: Ekole and Seibri Catchments

The Ekole and Seibri catchments rank lowest in flood susceptibility, with priority scores of 2.0 and 2.1, respectively in
Table 8 & Figure 10. These catchments exhibit characteristics that moderate flood severity, including lower drainage
densities, reduced stream frequency, and elongated basin shapes. Despite their lower flood susceptibility, localized
flood risks still exist, particularly in areas with poor drainage infrastructure. Flood management efforts in these
catchments should focus on sustainable land management practices and community-based flood preparedness programs.

Figure 10 presents a spatial representation of catchment flood influences, reinforcing the prioritization of intervention
efforts.

Figure 10. Final map of Catchments that influence flooding in the area.
4.9 Performance Evaluation of Machine Learning Models

To validate the integration of machine learning techniques, Random Forest (RF) and Support Vector Machine (SVM)
classifiers were applied to predict flood-prone zones using selected morphometric parameters as input features (Table 9).
Model training and evaluation were conducted using Python’s Scikit-learn library with a 10-fold cross-validation
strategy. The evaluation metrics used included accuracy, precision, recall, F1-score, and AUC-ROC.

Table 9. Performance evaluation of RF and SVM models.

Model Accuracy Precision Recall F1-score AUC-ROC
RF 0.89 0.86 0.91 0.88 0.93
SVM 0.85 0.82 0.87 0.84 0.89

The Random Forest model demonstrated superior performance with an accuracy of 89% and an AUC-ROC of 0.93,
outperforming the SVM model across all metrics. This indicated that ensemble learning offers a more robust framework
for modeling complex hydrological relationships influenced by multiple morphometric inputs.
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4.10 Implications for Flood Management Strategies

This study revealed the importance of tailored flood mitigation strategies for each catchment. Given the high flood
susceptibility of the Forcados catchment, immediate interventions such as reinforced embankments, improved drainage
networks, and advanced flood monitoring systems are recommended. For Nun catchment, which experiences moderate
flood influence, management strategies should focus on integrating flood control measures with sustainable
environmental practices. Implementing flood-resistant agricultural practices and maintaining riverbanks through
vegetation planting can help reduce flood risks in this area. For the lower-risk catchments, Ekole and Seibri,
maintaining natural hydrological functions should be prioritized. Sustainable urban planning and controlled land use can
help preserve the natural capacity of these basins to regulate water flow and mitigate localized flooding events.

5. Conclusion

This study underscores the critical role of morphometric analysis in evaluating flood susceptibility across the river
basins of Bayelsa State, Nigeria. By analyzing key drainage basin parameters such as drainage density (2.41 to 3.57),
stream frequency (5.00 to 11.71), bifurcation ratio (1.84 to 2.84), relief ratio (7.29 to 19.07), and form factor (0.64 to
1.04) it becomes evident that the catchments vary significantly in their flood risk profiles. Among the basins studied, the
Forcados catchment emerged as the most flooded prone. This is primarily due to its high drainage density (3.57), steep
terrain indicated by a high relief ratio (19.07), and short time of concentration (3.43), all of which contribute to its
susceptibility to flash flooding. In contrast, the Nun catchment shows moderate flood influence with a drainage density
of 2.49, while the Ekole (2.49) and Seibri (2.41) catchments exhibit lower susceptibility, attributed to their elongated
basin shapes and relatively low drainage densities. These findings advocate for catchment-specific flood management
strategies. Forcados urgently require structural interventions, such as enhanced drainage infrastructure and embankment
construction. The Nun catchment would benefit from eco-based flood control measures like afforestation and wetland
conservation. In lower-risk basins such as Ekole and Seibri, efforts should focus on sustainable land use planning and
the preservation of natural hydrological processes. Importantly, the study demonstrates that integrating morphometric
analysis with GIS-based flood risk assessment improves spatial prediction and supports evidence-based decision-
making. The application of machine learning models, specifically Random Forest (RF) and Support Vector Machine
(SVM) classifiers, further validated the importance of morphometric parameters in delineating flood-prone areas. These
models enhanced the accuracy of flood susceptibility mapping, particularly in identifying high-risk zones within the
Forcados basin. Therefore, this study establishes a scalable, data-driven framework for flood risk assessment, especially
in data-scarce regions like Bayelsa State. Future research should incorporate hydrological modeling and climate change
projections to refine the understanding of flood dynamics and inform long-term, adaptive flood management strategies.

6. Recommendations

Based on the study’s outcomes, targeted flood management strategies are recommended to address the varying degrees
of susceptibility observed across the catchments. In high-risk areas such as the Forcados catchment, structural
interventions including the construction of small retention dams, levees, embankments, and improved stormwater
drainage systems should be prioritized to mitigate rapid runoff and reduce the impact of flash floods. For the moderately
vulnerable Nun catchment, nature-based solutions such as afforestation, wetland restoration, and the protection of
riparian buffers are advised to enhance water retention and slow surface flow. In lower-risk catchments like Ekole and
Seibri, efforts should focus on maintaining existing natural hydrological processes through sustainable land-use
planning, environmental conservation, and regulation of urban expansion. Furthermore, flood management policies
should promote catchment-specific planning frameworks that incorporate both structural and ecosystem-based
approaches. Future research should aim to integrate climate change projections and advanced hydrological modeling
techniques such as the Soil and Water Assessment Tool (SWAT), HEC-HMS, and machine learning algorithms to
enhance the accuracy and adaptability of flood risk assessments under changing environmental conditions. These
proactive measures will be vital for building long-term flood resilience in Bayelsa State.
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