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Abstract

This study aimed to model and predict iron concentrations in groundwater within Yenagoa, Bayelsa State, Nigeria,
using machine learning techniques. It focused on evaluating spatial variability and determining the most influential
predictors to support groundwater quality management. A total of 50 groundwater samples were collected from
spatially distributed boreholes across multiple towns in Yenagoa. Geolocation data and iron concentrations were
recorded. Two supervised machine learning models Multiple Linear Regression (MLR) and Random Forest Regression
(RFR) were implemented. One-hot encoding was applied to categorical town data, and models were evaluated using R²,
MAE, and Root Mean Square Error (RMSE) metrics. Feature importance was assessed to identify key predictors. A
geospatial heatmap was developed using Inverse Distance Weighting (IDW) to visualize spatial trends. The MLR
model slightly outperformed the RFR, achieving an Coefficient of Determination (R²) of 0.92, Mean Absolute Error
(MAE) of 0.13 mg/L, and RMSE of 0.15 mg/L. Longitude and specific towns (notably Beta and Opolo) emerged as
dominant predictors, confirming spatial clustering of high iron concentrations in the eastern region of the study area.
Cross-validation confirmed the models’ robustness. The findings support the use of machine learning (ML) techniques
for cost-effective water quality prediction and spatial monitoring. This study introduces a hybrid geo-categorical
modeling approach, integrating both spatial coordinates and administrative town identifiers into ML frameworks. It
demonstrates the feasibility of lightweight, interpretable models like MLR for real-time deployment in low-resource
settings, offering a replicable solution for groundwater quality assessment in data-scarce regions. Future research should
expand datasets and explore additional hydrogeological variables to enhance model robustness.
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1. Introduction

Groundwater is a critical natural resource, providing potable water to over half of the global population, particularly in
rural and peri-urban areas where centralized water supply systems are often lacking [1]. In Nigeria, rapid population
growth and urbanization have intensified the demand for clean and safe water, making groundwater an indispensable
source [2]. However, the quality of groundwater is increasingly threatened by both natural geogenic processes and
anthropogenic activities, leading to the presence of various contaminants, including iron (Fe), which poses challenges
for water usability and infrastructure maintenance [3]. Iron contamination in groundwater primarily arises from the
dissolution of iron-bearing minerals within aquifer formations, a process influenced by the geochemical and redox
conditions of the subsurface environment [4]. In regions like the Niger Delta of Nigeria, characterized by sedimentary
rocks rich in iron oxides, naturally elevated levels of iron are prevalent [5,6]. While iron is an essential micronutrient,
its excessive concentration in drinking water can lead to aesthetic issues such as metallic taste and staining, as well as
operational problems like clogging of pipes and promotion of iron bacteria growth [7]. Moreover, high iron levels often
indicate reducing conditions that may also mobilize other harmful elements like arsenic and manganese, posing
additional health risks [1]. The assessment and monitoring of groundwater quality in Nigeria face significant challenges
due to infrastructural limitations, financial constraints, and logistical difficulties [2]. Traditional methods involving
systematic sampling and laboratory analysis are time-consuming and often lack the spatial coverage needed to capture
regional variations in water quality [8]. In areas like Bayelsa State, comprehensive water quality data are sparse,
hindering the ability to assess trends and implement targeted interventions effectively [6,9]. Advancements in data
science, particularly machine learning (ML), offer promising avenues for addressing these challenges by enabling the
development of predictive models that can analyze complex relationships between various environmental parameters
and groundwater quality indicators [2]. ML algorithms, such as Multiple Linear Regression (MLR) and Random Forest
Regression (RFR), have been effectively applied in environmental sciences for tasks like air quality forecasting, soil
classification, and surface water pollution prediction [10,11]. Their application in groundwater quality modeling is
gaining traction, providing tools for predicting contaminant concentrations based on readily available data [3].

Iron concentration prediction using ML is particularly advantageous due to the spatial correlation of iron occurrence
with measurable parameters like geographic coordinates, aquifer characteristics, depth to water table, and land use
patterns [4]. MLR offers a straightforward approach to modeling linear relationships between predictors and outcomes,
while RFR, an ensemble learning method, captures nonlinearities and interactions by aggregating multiple decision
trees, enhancing predictive accuracy [10]. These models have demonstrated robustness in handling complex
environmental datasets, making them suitable for groundwater quality [2,12]. In the context of Bayelsa State, and
specifically Yenagoa, the need for spatially explicit models to predict iron levels in groundwater is urgent. The region's
hydrogeological features, including a high water table, extensive swamps, and substantial rainfall, contribute to
complex subsurface geochemical dynamics [5,9,13]. Coupled with a socio-economic landscape marked by a mix of
rural communities and expanding urban centers, ensuring access to safe water for all population segments is imperative
[2]. This study aims to bridge the existing data gap by applying MLR and RFR models to predict iron concentration in
groundwater using a dataset comprising 50 boreholes across various towns in Yenagoa. Each data point includes
geographic coordinates and measured iron levels, facilitating the development of models that can capture spatial
variations in iron concentration. The objectives are threefold: (1) to preprocess and explore the data for underlying
patterns, (2) to develop and compare the performance of linear and ensemble ML models, and (3) to visualize the spatial
distribution of iron concentration using geospatial plots. By integrating ML techniques with spatial data, this research
contributes to the growing body of knowledge on data-driven groundwater quality assessment. The findings are
expected to support local policymakers, water resource managers, and public health officials in making informed
decisions regarding groundwater monitoring and remediation efforts. Moreover, the study serves as a proof-of-concept
for scaling up similar modeling approaches to other regions with comparable hydrogeological settings, aligning with
global trends toward digital environmental management and offering scalable, cost-effective solutions for water quality
prediction [3].

2. Study Area

This study was carried out in Yenagoa, the capital of Bayelsa State, located in the lower Niger Delta region of southern
Nigeria. Geographically, it lies between latitudes 4°58′30″N and 5°03′30″N and longitudes 6°16′00″E and 6°22′00″E
(Figure 1) and sits on a low-lying terrain with elevations ranging from 20 to 37 meters above sea level. Yenagoa
experiences a humid tropical climate, with annual rainfall exceeding 2,500 mm, supporting a network of rivers,
wetlands, and mangrove swamps. These features, along with a shallow water table, make the area highly prone to
flooding [14,15]. The underlying geology consists of recent alluvium and coastal plain sands, which form unconfined to
semi-confined aquifers recharged by rainfall and river seepage [16-18]. The groundwater system is vulnerable to
contamination due to high permeability and shallow depths, and this is exacerbated by urban growth, oil exploration,
and poor waste management [9]. These challenges highlight the growing risk of groundwater pollution in the area.
According to the 2006 census, Yenagoa had a population of 352,285, projected to exceed 524,400 by 2022 [19]. It
functions as a regional hub, with extensive road networks, and a local economy dependent on artisanal fishing, farming,
and sand mining, particularly along riverbanks and floodplains [17]. Geologically, the area forms part of the Niger
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Delta sedimentary basin, shaped by mid-Cretaceous rifting during the separation of South America and Africa [20-23].
The basin contains structural fault systems that influence surface morphology and hydrologic behavior, making
Yenagoa a strategic location for flood risk and groundwater vulnerability assessment.

Figure 1. Location map of study area.

3. Data and Methods

The dataset for this study was derived from a structured groundwater quality survey implemented collaboratively with
regional water boards and environmental monitoring institutions in Bayelsa State, Nigeria. A total of 50 boreholes were
selected using a stratified spatial sampling design to capture variability in hydrogeological conditions across key urban
and peri-urban settlements. The selected towns included Igbogene, Kpansia, Amarata, Opolo, Tombia, and adjacent
communities. Each borehole was georeferenced using a high-accuracy handheld Global Positioning System (GPS)
device to ensure precise spatial location data suitable for geostatistical analysis [24,25]. Water samples were collected
following the protocols outlined in the American Public Health Association (APHA) Standard Methods for the
Examination of Water and Wastewater [26]. Groundwater was extracted via submersible pumps after preliminary
flushing and stabilization of physico-chemical parameters, and samples were collected into pre-cleaned, acid-washed
polyethylene bottles. Immediately upon collection, samples were preserved with ultrapure nitric acid to pH < 2 to
minimize adsorption or precipitation processes. Sample containers were stored in cooled insulated boxes and
transported to a certified environmental laboratory within 24 hours for analysis. Iron concentration was determined
using the 1,10-phenanthroline colorimetric method via UV–Vis spectrophotometry. All analyses were conducted in
triplicates to ensure precision and reproducibility. Quality assurance and control measures included the use of field
blanks, procedural blanks, and certified reference materials as per ISO 17025 standards [27,28]. Analytical performance
was further verified through laboratory inter-comparisons and spike recovery tests. The borehole data, including latitude,
longitude, location name, and measured iron concentrations (in mg/L). This spatially distributed dataset served as the
input for predictive modeling and geostatistical visualization in subsequent sections

3.1 Descriptive Statistical Analysis of Iron Concentration

The distribution and variability of iron concentrations across the 50 borehole samples, basic descriptive statistics were
computed. Table 1 summarizes the minimum, maximum, mean, standard deviation, skewness, and kurtosis of the
measured iron concentrations (in mg/L). These metrics support a quantitative understanding of data spread and
symmetry, which is essential for model training and residual interpretation.

Table 1. Descriptive statistics of iron concentration in groundwater samples.

Statistic Value (mg/L)
Minimum 0.11
Maximum 0.80
Mean 0.34

Standard Deviation 0.15
Skewness 0.94
Kurtosis 0.51
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The data shows moderate positive skewness, indicating a longer tail on the right-hand side. The standard deviation
reflects modest variability within the dataset, which is expected given the spatially constrained study area. This
statistical summary complements the Exploratory Data Analysis (EDA) visualizations and informs model assumptions
such as normality and homoscedasticity in regression

3.2 Modeling Approach

3.2.1 Modeling Strategy

This study employed a supervised machine learning framework to predict iron concentrations in groundwater using
spatial and categorical features (Figure 2). The predictive modeling approach consisted of algorithm selection, data
preprocessing, model training, validation, and performance comparison. MLR and RFR were selected due to their
widespread use and complementary strengths in environmental prediction tasks [29,30]. MLR provides interpretability,
while RFR accommodates nonlinearities and feature interactions.

Figure 2. Flow chart of predictive modeling for iron in groundwater.

3.2.2 Data Preprocessing

Preprocessing is a foundational step in any data-driven environmental modeling study. It ensures data consistency,
completeness, and suitability for algorithmic analysis [31]. In this study, the raw dataset was obtained from field-
sampled groundwater points across several towns in Yenagoa, Nigeria. The dataset included numerical features (iron
concentration, latitude, longitude) and one categorical feature (town name). Ensuring the integrity of these inputs was
crucial, given that geospatial patterns and environmental health assessments are highly sensitive to input noise or
structural bias [32,33].

To facilitate integration into the machine learning pipeline, the categorical variable “town” was encoded using One-Hot
Encoding (OHE), which transforms each category into a binary vector. This approach prevents the algorithm from
assuming an ordinal relationship between the towns:

OHE Ti =
1, if sample belongs to town Ti
0, otherwise

(1)

This transformation preserved the spatial locality encoded in the categorical feature without introducing spurious
correlations due to integer encoding. Such encoding approaches are widely adopted in water quality and geospatial ML
studies, ensuring that categorical attributes do not bias model learning [34-36]. Recent research further emphasizes the
importance of careful feature engineering and categorical handling in environmental prediction tasks, particularly in
groundwater quality assessment and hydrological modeling [37-39]. By combining OHE with advanced ML models,
several studies have demonstrated improved prediction accuracy and interpretability for water resources applications
[40,41]. No missing data were identified upon inspection using the df.isnull().sum() command in Python, thereby
eliminating the need for imputation strategies such as K-Nearest Neighbors (KNN) or mean substitution.

Regarding feature scaling, latitude and longitude values were measured in decimal degrees and showed minimal
variability across the study area (a compact geographic region). A coefficient of variation (CV) analysis revealed CV <
10% for both spatial coordinates, suggesting that normalization or standardization would not enhance model
performance and could potentially distort the spatial information inherent in the data [42-46]. Thus, the raw coordinate
values were retained.
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The dataset was then randomly partitioned into training (80%) and testing (20%) subsets using
train_test_split(random_state=42) to ensure reproducibility and mitigate sampling bias:

D = Dtrain∪Dtest,∣Dtrain∣= 0.8N,∣Dtest∣= 0.2N (2)

A boxplot analysis (Figure 3) confirmed that all iron values fell within the range of 0.1 to 0.8 mg/L, and no values lay
beyond the IQR (Interquartile Range)-based outlier thresholds defined as:

x < Q1 - 1.5⋅ IQR or x > Q3 + 1.5⋅ IQR (3)

This lack of extreme outliers suggested that the field data were reliable and uniformly sampled, strengthening
confidence in subsequent modeling [27].

Figure 3. Boxplot of iron concentrations. Diamond-shaped points (symbols outside the whiskers), these are outliers, i.e., data points
that fall beyond 1.5× IQR from the quartiles.

3.2.3 Exploratory Data Analysis

EDA was employed to reveal underlying patterns, relationships, and potential drivers of iron contamination across the
study area. Iron concentration statistics were visualized through histograms, scatter plots, and town-wise boxplots
(Figure 3). This multiscale analysis helped validate the hypothesis that geographical location influences iron
concentration levels.

A Pearson correlation analysis quantified the relationship between geographic coordinates and iron concentration:

rxy=
∑ xi-x

ˉ
yi-y

ˉ

∑ xi-x
ˉ 2

⋅ ∑ yi-y
ˉ 2

(4)

Longitude and iron concentration: r = 0.39, suggesting a moderate positive correlation.

Latitude and iron concentration: r = 0.05, indicating a negligible relationship.

These results indicate that the east-west spatial orientation, rather than the north-south alignment, is a key factor in
predicting iron concentration. This finding supports previous environmental studies that attribute iron content variation
to lateral subsurface transport and anthropogenic activity gradients aligned with settlement patterns [25]. The boxplot
visualization (Figure 3) further revealed stark inter-town variability. For instance, Beta and Delta towns exhibited
significantly higher median iron levels, whereas Alpha and Gamma recorded lower central tendencies. This spatial
disparity confirmed the importance of retaining town identity as a predictor and justified the use of spatially distributed
town identifiers in the regression models.

3.2.4 Software and Tools

Python 3.9 was used for the modeling pipeline, including packages such as Pandas, NumPy, Matplotlib, Seaborn, and
Scikit-learn. These tools enabled reproducible analysis, visualization of trends, and performance evaluation of the
models [47-49].

3.2.5 Ethical Considerations

All field activities complied with ethical guidelines for environmental data collection and were approved by the local
water authorities. No human subjects were involved, and the research adhered to the principles of transparency,
reproducibility, and data protection.

3.2.6 Model Development and Performance

To model iron concentration as a function of geographic and town-based features, two machine learning approaches
were implemented: Both MLR and RFR models were trained using the scikit-learn library in Python. The dataset was
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split into training (80%) and testing (20%) sets using a random seed to ensure reproducibility. Performance was
evaluated using three standard metrics: MAE, RMSE and Coefficient of Determination (R²). The MLR model achieved
an R² of 0.92 on the test set, with a MAE of 0.13 mg/L and RMSE of 0.15 mg/L (Table 2). In comparison, the RFR
model yielded an R² of 0.89, MAE of 0.15 mg/L, and RMSE of 0.17 mg/L. These results indicate that while both
models performed well, the linear model slightly outperformed the ensemble method in this specific case.

Table 2.Model performance metrics.

Model Data Split MAE (mg/L) RMSE (mg/L) R²
MLR Training 0.12 0.14 0.93
MLR Testing 0.13 0.15 0.92
RFR Training 0.10 0.12 0.96
RFR Testing 0.15 0.17 0.89

3.2.7 Multiple Linear Regression

The MLR model assumes a linear combination of input variables as predictors of the target variable (iron concentration):

y�i=β0+β1⋅ x1i+β2⋅ x2i+…+βk⋅ xki+ϵi (5)

where y�i is predicted iron concentration for sample i , x1i, x2i, ..., xki is input features (longitude, latitude, one-hot
encoded towns), β0 is intercept, βk is regression coefficients, ϵi is residual error.

The model was trained using Ordinary Least Squares (OLS), minimizing the residual sum of squares between observed
and predicted values [2,3].

3.2.8 Random Forest Regression

The RFR model, implemented via Scikit-learn’s RandomForestRegressor, is an ensemble learning method based on
bagging (bootstrap aggregating) [30,31,50]. It constructs T regression trees from bootstrapped training subsets and
averages their predictions:

y�i=
1
T t=1

T ft� xi (6)

where ft xi is the prediction from tree t for input xi.

RFR handles high-dimensional and multi-type data well and automatically accounts for interaction effects and non-
linearities without prior transformation.

3.2.9 Performance Evaluation Metrics

Model performance was evaluated using three standard regression metrics on the held-out test set (20% of data)
[31,34,51]:

MAE:

MAE= 1
n i=1

n ∣� yi-y�i∣ (7)

Measures average prediction error magnitude.

RMSE:

RMSE= 1
n i=1

n yi-y�i 2� (8)

Penalizes larger errors more heavily.

R²:

R2=1- ∑ yi-y�i 2

∑ yi-y
ˉ 2 (9)

Quantifies the proportion of variance in the target variable explained by the model.

3.2.10 Cross-Validation

To assess the generalizability of the models, k-fold cross-validation was applied with k = 5

R
ˉ
2= 1

5 k=1
5 Rk

2� (10)
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This technique partitions the dataset into five subsets, using four for training and one for validation in each iteration.
The average cross-validation R² for the MLR model was 0.91, while the RFR model averaged 0.87, confirming the
consistent performance of the linear approach.

3.2.11 Feature Importance and Interpretability

In the MLR model, the regression coefficients showed that certain towns, notably Beta and Delta, had strong positive
contributions to predicted iron concentrations. Longitude also had a significant positive coefficient, corroborating the
spatial trend observed during exploratory analysis. For the RFR model, feature importance analysis revealed that
longitude accounted for nearly 60% of the model’s predictive power, followed by categorical town variables such as
Beta and Opolo. Latitude was relatively less influential, indicating that east-west variation was a stronger determinant
of iron levels. Figure 4 shows the ranked feature importance derived from the RFR model. This visualization assists in
identifying which variables should be prioritized in future sampling and modeling efforts.

For RFR, feature importance was calculated based on Gini impurity reduction:

Importancef= t∈T
​

n∈Nt(f)
​ Δ�� i(n) (11)

Where: Importancef = importance score of feature f, T = set of all trees in the forest, Nt(f) = set of nodes in tree t that
split on feature f, Δi(n) = impurity decrease (e.g., Gini or variance reduction) at node n. [30,31].

Figure 4. Distribution of iron concentration (mg/L).

3.2.12 Visualization of Predictions

To assess model accuracy visually, scatter plots comparing actual and predicted iron values were generated for both
models. In the case of MLR, the points closely followed the diagonal line, indicating strong predictive accuracy. The
RFR plot showed slightly more dispersion but still maintained a clear positive trend. Figures 4 and 5 illustrate the
predicted vs. actual iron concentrations for MLR and RFR respectively. These visualizations confirm the quantitative
metrics and highlight the practical utility of both approaches [24].

Figure 5. Longitude (a) and latitude (b) against iron concentration (mg/L).

3.2.13 Spatial Mapping

A geospatial heatmap was created using IDW to visualize the distribution of iron concentrations across the study area.
Using the predicted values and coordinate data, a spatial plot was constructed with color intensity representing iron
levels. The map revealed distinct clustering patterns, with higher concentrations occurring in the eastern sectors of
Yenagoa (Figure 6).

（a） （b）
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Z� s0 =
i=1
N Z si

d s0,si
2�

i=1
N 1

d s0,si
2�
(12)

Where: Z� s0 = interpolated value at location s0 , Z si = measured value at known location si , d s0,si = Euclidean
distance between s0 and si, p = power parameter (commonly p=2), N = number of sampled points [29,52].

Figure 6. Pearson correlation heatmap.

4. Results and Discussion

4.1 Results

4.1.1 Exploratory Data Analysis

The exploration data analysis is undertaken to understand the structure, relationships, and spatial distribution of the
dataset prior to the application of predictive models. The dataset comprised one target variable iron concentration
(mg/L), two continuous spatial coordinates longitude and latitude, and one categorical spatial variable town name.

4.1.2 Target Variable Distribution: Iron Concentration

The histogram and kernel density estimate of iron concentrations (Figure 4) revealed a moderate positive skew
(skewness = 0.94), with a concentration range of 0.11-0.80 mg/L. Most borehole samples clustered between 0.20-0.40
mg/L, with fewer high-end values approaching the Nigerian Standard for Drinking Water Quality threshold of 0.30
mg/L. This pattern indicates that while elevated iron concentrations are present, most of the dataset lies near acceptable
limits, which is consistent with localized geogenic enrichment rather than widespread contamination. The kurtosis value
(0.51) indicated a relatively flat-topped distribution compared to a normal curve, implying modest variability in iron
levels. This distributional profile was important for model selection, as highly skewed data can violate the assumptions
of linear models like MLR if not addressed through transformations.

4.1.3 Spatial Coordinates: Longitude and Latitude

Longitude and latitude were analyzed to identify spatial trends in iron concentrations. Scatter plots of iron concentration
against longitude (Figure 5) revealed a moderate positive correlation (Pearson r ≈ 0.58), indicating that iron
concentrations tend to increase toward the eastern portion of the study area. Conversely, the correlation with latitude
was negligible (r ≈ 0.07), indicating that north-south positioning plays a minimal role in explaining iron variability.

Mapping the coordinates further reinforced this spatial pattern, with high-concentration points forming clusters in
eastern towns like Beta and Opolo, while western settlements such as Gamma showed consistently lower values.

4.1.4 Pearson Correlation Matrix

A Pearson correlation heatmap (Figure 6) was constructed to quantify relationships among the numerical predictors and
the target variable. As expected, longitude showed a meaningful correlation with iron concentration, while latitude did
not. The correlation between longitude and certain one-hot encoded towns (Beta, Opolo) Shows that these locations are
spatially aligned along the east–west gradient of high iron concentrations. This finding was instrumental in justifying
the use of spatially explicit modeling approaches.

4.1.5 Pairwise Relationships

Pair plots (Figure 7) between longitude, latitude, town-encoded variables, and iron concentration revealed several key
patterns: (1) Distinct clustering of Beta and Opolo samples in high-iron regions. (2) Overlap between medium-level iron
clusters from towns like Amarata and Tombia, indicating potential transitional zones in aquifer geochemistry. (3)
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Minimal spread along the latitude axis compared to longitude, reinforcing the earlier observation of an east–west
dominance in spatial variation.

Figure 7. Pairwise distributions and relationships for Iron (mg/L), Longitude (°E), and Latitude (°N). (a) Iron__histogram; (b) Iron vs.
Longitude; (c) Iron vs. Latitude; (d) Longitude vs. Iron; (e) Longitude__histogram; (f) Longitude vs. Latitude; (g) Latitude vs. Iron; (h)
Latitude vs. Longitude; (i) Latitude__histogram.

4.1.6 Model Performance

The evaluation of model performance was based on three key metrics: MAE, RMSE, and R². These metrics were
chosen for their ability to reflect both the accuracy and the explanatory power of the models in predicting iron
concentrations. For the MLR model, the results were encouraging. The model achieved an R² score of 0.92 on the test
set, indicating that 92% of the variance in the observed iron concentration values could be explained by the model’s
input features. The MAE was 0.13 mg/L, and the RMSE was 0.15 mg/L. These low error values suggest that the
predictions were, on average, very close to the actual values measured in the field.

The RFR model performed comparably well, with an R² of 0.89, MAE of 0.15 mg/L, and RMSE of 0.17 mg/L. While
slightly less accurate than the MLR model, the RFR still demonstrated strong predictive capabilities. The slight
decrease in accuracy was expected, given the small dataset and the model’s tendency to overfit in low-data scenarios.
However, the robustness and non-linearity capturing ability of the RFR model remained evident.

4.1.7 Cross-Validation Results

To ensure that the models were not overfitted with the training data, a 5-fold cross-validation was conducted. The MLR
model maintained a strong average R² of 0.91 across the folds, and the RFR averaged 0.87. These consistent scores
reinforce the generalizability of both models and support their use in similar hydrogeological contexts.

4.1.8 Feature Importance

The importance of different input features was evaluated for both models. In the MLR model, the town categories
emerged as the most influential variables, especially Town Beta, which consistently showed a high positive coefficient.
Longitude also had a noticeable effect, supporting the earlier observation that higher iron concentrations were more
prevalent in the eastern parts of Yenagoa. For the RFR model, a detailed feature importance analysis was performed
using the Gini importance method provided by the scikit-learn library. Longitude accounted for nearly 60% of the
model’s decision-making process, while Town Beta and Opolo each contributed significantly. Latitude had minimal
importance, suggesting that the east-west geographic variation had a stronger influence on iron concentration than the
north-south gradient.

Akajiaku et al. 9

JCSA, Vol. 2, No. 3, September 2025 https://jcsa.gospub.com/jcsa



Figure 8 presents the ranked feature importances as determined by the RFR model. This visualization provides a clear
understanding of which features should be prioritized in future modeling and data collection efforts.

Figure 8. Feature importance from the Random Forest model predicting iron concentration.

4.1.9 Visual Inspection of Model Predictions

The predicted vs. actual scatter plots further validated the quantitative performance of the models. For the MLR model
(Figure 9), the scatter points closely followed the diagonal reference line, indicating high predictive accuracy. Only
minor deviations were observed, primarily at higher concentration levels.

Figure 9. Scatter plot of predicted vs. actual iron concentrations using the Linear Regression model.

4.1.10 Spatial Distribution Patterns

A spatial heatmap was generated to illustrate the distribution of iron concentration values across 50 boreholes. Figure 8
depicts this distribution, with color gradients representing concentration levels. The visual clearly shows a clustering of
higher iron values in the eastern part of the study area. Towns such as Beta, Opolo, and Amarata recorded the highest
readings, whereas towns like Gamma and Akaba showed consistently low levels in Figure 10.

Figure 10. Spatial distribution of iron concentration across boreholes.
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This spatial pattern corroborates the earlier findings from the EDA and feature importance analysis. The eastern
clustering of high iron concentrations may be attributed to regional geological differences or anthropogenic factors,
such as land use and industrial activities.

4.2 Discussion

4.2.1 Model Performance and Predictive Reliability

The comparative performance of the MLR and RFR models provides compelling evidence that supervised machine
learning techniques can reliably predict iron concentrations in groundwater using minimal yet informative spatial and
categorical inputs. The MLR model demonstrated a superior coefficient of determination (R² = 0.92), slightly
outperforming the RFR model (R² = 0.89) across all evaluation metrics, including MAE and RMSE. These results
affirm that the MLR model efficiently captures the linear associations between the predictors longitude, latitude, and
town identity and the target variable (iron concentration), even within a relatively small dataset (n = 50) [29,30]. The
performance gap between MLR and RFR also suggests that in this specific hydrogeological context, the relationships
between features and iron levels exhibit a predominantly linear structure, thereby reducing the added value of complex
non-linear modeling.

To validate the robustness of these findings, five-fold cross-validation was employed. This method tests the model’s
ability to generalize across different data splits and is a recommended practice in environmental machine learning
studies [31,34]. The MLR model maintained a stable average R² of 0.91 across the five folds, while the RFR model
averaged 0.87. These results suggest that both models are not overfitted and are capable of providing consistent
performance on unseen data. Additionally, scatter plots of observed versus predicted iron concentrations (Figure 9)
closely follow the 1:1 reference line, indicating minimal deviation and reinforcing the quantitative metrics.

4.2.2 Importance of Spatial and Categorical Predictors

A critical finding of this study is the influence of spatial orientation, particularly longitude, on iron concentration levels.
Feature importance analysis revealed that longitude was the most significant predictor in the RFR model, accounting for
nearly 60% of the decision-making weight, and exhibited a strong positive coefficient in the MLR model. This suggests
a pronounced east-west gradient in subsurface geochemical conditions, possibly driven by lithological variation, redox
state, or anthropogenic influence across the study area [6,25]. The minimal influence of latitude further reinforces the
observation that lateral, rather than vertical, geospatial variation is the dominant driver of iron distribution in Yenagoa’s
aquifers.

Moreover, specific towns such as Beta and Opolo emerged as consistent hotspots for elevated iron concentrations
(Figure 11). Their prominence in both MLR coefficients and RFR feature importance rankings highlights the value of
integrating town-level administrative units as categorical predictors. This hybrid approach combining continuous
geospatial data with encoded town identities captures both physical geography and socio-administrative distinctions,
yielding improved model performance and localized insight [32,33]. Such modeling approaches are particularly
effective in contexts like the Niger Delta, where geological and human factors often intersect at fine spatial scales.

Figure 11. Iron concentrations across towns, with higher levels observed in Beta.

4.2.3 Practical Validation and Triangulation of Results

The discussion of model outputs is further strengthened by spatial visualizations and geostatistical interpretations. The
heatmap generated using IDW interpolation (Figure 10) clearly illustrates a spatial clustering of higher iron
concentrations in the eastern parts of the study area. This spatial pattern corresponds well with the numerical feature
importance rankings, validating the models through triangulation of multiple evidence streams quantitative metrics,
geospatial mapping, and residual distribution [24,52].
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Additionally, town-wise comparisons revealed that predictive accuracy was highest in locations with more borehole
samples, such as Amarata and Opolo. In contrast, towns like Swail and Tombia, which had fewer sampled boreholes,
exhibited slightly higher prediction errors. This highlights the sensitivity of machine learning models to data density
and underscores the importance of balanced spatial sampling in future studies [27,28].

4.2.4 Contribution to Scientific Knowledge and Methodological Innovation

This study contributes novel insights into the application of interpretable machine learning models for environmental
health in data-scarce regions. First, the use of hybrid geo-categorical modeling where town identifiers are encoded using
one-hot encoding alongside geospatial coordinates demonstrates a replicable framework for small-sample predictive
modeling. This method allows for fine-scale prediction even when detailed hydrogeological data (e.g., aquifer lithology,
redox potential) are not available. Second, the superior performance and interpretability of MLR in this context
challenges the prevailing assumption that more complex models necessarily yield better results in environmental
applications. This is particularly important in low-resource settings, where lightweight models can be implemented on
mobile platforms for real-time decision support [30,53].

Furthermore, the study offers a proof-of-concept for applying spatially informed machine learning techniques in
sedimentary coastal environments. By confirming the spatial dependency of iron contamination and identifying
geographic hotspots, the study fills a regional data gap and establishes baseline conditions for Yenagoa. These insights
can inform groundwater remediation strategies, monitoring programs, and public health interventions across Bayelsa
State and the broader Niger Delta region [2,9].

4.2.5 Practical Implications for Water Resource Management

Beyond academic value, the predictive framework developed in this study has immediate applications in groundwater
management and environmental policy. Government agencies and environmental stakeholders can utilize these models
to generate early warning indicators for iron contamination based solely on GPS coordinates and town information. This
approach offers a cost-effective alternative to laboratory testing, particularly in rural or peri-urban regions with limited
access to water quality assessment infrastructure [1,6,28]. The models can also be embedded in mobile GIS platforms,
enabling on-site risk assessments and community-level awareness campaigns.

Policy implications include improved allocation of water treatment resources, strategic placement of new boreholes, and
targeted remediation of high-risk areas such as Beta and Opolo. Furthermore, model outputs could inform regulatory
standards and spatial zoning ordinances designed to protect groundwater resources from overexploitation or industrial
contamination [7,52].

5. Conclusion

This study successfully demonstrated the application of supervised machine learning algorithmsn MLR and RFR for the
prediction of iron concentration in groundwater across Yenagoa, Bayelsa State, Nigeria. Leveraging a dataset of 50
spatially distributed boreholes, both models achieved high accuracy, with MLR slightly outperforming RFR in terms of
R² (0.92 vs. 0.89), MAE, and RMSE values. The results highlight the effectiveness of integrating spatial variables,
particularly longitude and town identifiers into predictive frameworks for groundwater quality assessment. The
visualizations, including geospatial heatmaps and scatter plots of observed versus predicted values, revealed clear
spatial trends in iron distribution. Higher concentrations were found in the eastern part of the study area, suggesting
potential geogenic sources or anthropogenic influences in those zones. This spatial clustering underlines the critical role
of GIS-enabled data in environmental modeling. Despite the dataset’s limited size, the models demonstrated robustness
through cross-validation and alignment with geostatistical expectations. The predictive framework presented can serve
as a decision-support tool for water managers and environmental regulators, particularly in regions where water quality
monitoring is constrained by limited infrastructure. Future work should aim to incorporate additional hydrogeological
variables, expand the dataset across broader temporal and spatial scales, and integrate spatial interpolation techniques
like kriging to produce continuous risk maps. Ultimately, this research affirms the utility of machine learning in
enhancing sustainable water resource management and provides a replicable blueprint for similar applications in data-
sparse regions

5.1 Key Findings

The MLR model slightly outperformed the RFR model in terms of all evaluation metrics.

Longitude and specific towns (Beta, Opolo) were consistently the most important predictors.

Spatial distribution patterns confirmed higher concentrations in the eastern sector.

Predictive performance was robust across towns with sufficient data coverage.
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These results support the conclusion that both MLR and RFR are viable tools for predicting iron concentrations in
groundwater, with MLR offering slightly better performance in this context. The findings further emphasize the utility
of spatial data in environmental modeling.

5.2 Novelty and Justification

This section of the study contributes the following novel insights to the field of geospatial water quality modeling:

Geo-Categorical Integration: The integration of one-hot encoded categorical spatial variables (towns) alongside
coordinates demonstrates a hybrid modeling structure that respects both physical geography and
administrative/geosocial segmentation.

Model Transparency for Policy: MLR provides direct insight into the magnitude and direction of influence of
geographic and spatial variables, which is crucial for communicating findings to non-technical stakeholders and
policymakers.

Suitability for Real-Time Deployment: Given MLR’s low computational demand and interpretability, it can be easily
embedded into mobile platforms or decision-support dashboards for real-time groundwater quality monitoring and
public advisories in low-resource settings.

5.3 Limitations and Future Enhancements

Despite the strong performance of the models and the methodological rigor applied, several limitations warrant
consideration. The dataset’s limited size (n = 50) may constrain the generalizability of findings beyond the study area.
Although five-fold cross-validation helped mitigate overfitting risks, expanding the sample size would improve the
robustness and reliability of future predictions. Also, the absence of hydrogeochemical variables such as aquifer depth,
soil pH, redox potential, and proximity to contaminant sources limits the explanatory power of the current models

Another key limitation is the assumption of stationarity in spatial relationships, which may not hold in dynamic
environments undergoing rapid land use change. Additionally, the use of one-hot encoded town identifiers does not
capture intra-town variability, which could be addressed in future studies using high-resolution geostatistical techniques
like kriging or spatial regression models.

Future research should focus on integrating a broader set of environmental and anthropogenic variables, expanding the
spatial and temporal scope of sampling, and employing advanced spatial models (e.g., Geographically Weighted
Regression, spatial autocorrelation models) to further enhance prediction accuracy and spatial interpretability.
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